
A Replication & Extension of Caruana & Niculescu-Mizil (CNM06)

Urmi Suresh
Department of Cognitive Science
University of California San Diego
La Jolla, CA 92093, USA

USURESH@UCSD.EDU

Abstract

This paper explores the process and results of a small replication of the analysis done in the
paper by Caruana & Niculescu-Mizil (CNM06), with the purpose being to evaluate a few
different supervised learning algorithms and determine if any of them outperform the others
at binary classification. The performance of four various learning algorithms on four data sets
are measured by three different metrics: accuracy, AUC, and F1 score. The algorithms
performed are support vector machines (SVM), logistic regression, k-nearest neighbors
(KNN), and random forests. Overall, random forests consistently outperforms the other
models, matching the results of CNM06.
Keywords: Binary Classification, Support Vector Machines (SVM), Logistic Regression,
K-Nearest Neighbors (KNN), Random Forests, Supervised Learning Algorithms,
Performance Metrics

1. Introduction
The driving force between CNM06 was that Caruana and Niculescu-Mizil felt that there was a
lack of comprehensive empirical studies that compared and evaluated the performance of various
learning algorithms. Besides STATLOG (King et al., 1995) that was comprehensive at the time of
its publication, there was no study that explored newer learning algorithms such as boosting,
SVMs, bagging and random forests. Therefore, Caruana and Niculescu-Mizil took it upon
themselves to create a complete comparison of ten supervised learning algorithms measured by
eight different performance metrics on eleven different data sets. The learning algorithms
assessed in CNM06 are bagged trees, boosted stumps, boosted trees, decision trees, logistic
regression, memory-based learning, naive bayes, neural nets, SVMs, and random forests. These
models are evaluated on accuracy, average precision, cross-entropy, F-score, Lift, precision/recall
break-even point, ROC Area, and squared error. Furthermore, CNM06 takes the comparison of
models one step further by calibrating the predictions of each algorithm with Platt Scaling and
Isotonic Regression to address the issue of how some of the performance metrics interpret
predictions as probabilities and some models are not capable of predicting probabilities. The
algorithms are compared both before and after the calibrations.

As the reasoning behind my study is to replicate CNM06 on a smaller case as well as provide
more support for the results present in CNM06, I recreated and expanded the experimentation

done by Caruana and Niculescu-Mizil. In an effort to simplify the complexity of CNM06, I chose
a smaller subset of the algorithms, performance metrics, and data sets present in CNM06. The
four learning algorithms I chose to recreate are support vector machines, logistic regression,
k-nearest neighbors, and random forests. The three performance metrics are accuracy, ROC-AUC,
and F-score. Finally three out of the four data sets were chosen from the UC Irvine Machine
Learning Repository with the fourth one being from the StatLib Repository. Two of the main data
sets are already used in CNM06 and two of the data sets are independent from the CNM06 study.
For each of the models performed, a variety of hyperparameters are tested in order to produce the
highest accuracy, AUC, and F-score. The specific parameters are detailed below under the
Learning Algorithms section. Ultimately, the goal behind the following paper is to present a
smaller study that corroborates the results in CNM06 and shows that even with a smaller subset
of variables the results are still consistent.

2. Methodology

2.1. Learning Algorithms

This section contains a thorough description of all of the parameters used when running each of
the following algorithms. When replicating the algorithms the parameters used for each learning
algorithm are as close to CNM06 as possible, with a few purposeful adaptations.

SVMs: I specify the kernel types to be used in the algorithm as linear, polynomial (poly), and
radial basis function (rbf). The varying gamma widths used only for the rbf kernel are {0.001,
0.005, 0.01, 0.1, 0.5, 1, 2}. The different degrees of the polynomial kernel function are 2 and 3.
For all three of the kernels, the regularization parameter C is varied by the following values: 10-7,
10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, and 103.

Logistic Regression (LR): For logistic regression I train on both regularized (penalty = ‘l2’) and
unregularized (penalty = ‘none’) models. For both the regularized and unregularized models I
keep the algorithm to use in the optimization problem as ‘lbfgs’ as when I ran the ‘l2’ penalty
with ‘liblinear’, ‘lbfgs’, and ‘saga’ the ‘lbfgs’ solver performed consistently better. Similarly
when I ran the ‘one’ penalty with ‘lbfgs’ and ‘saga’ the ‘lbfgs’ performance was consistently
higher than the ‘saga’ performance. For the regularized model I vary the regularization parameter
by the following values: 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1, 100, 101, 102, 103, and 104.

KNN: For the number of neighbors I use 26 evenly spaced out whole number values ranging
from K=1 to K= n/10 where n is the training set size. In this case n=5000 making the range from
K=1 to K=500. For the distance metric to use for the tree I chose ‘euclidean’ and for the weight
function used in prediction I chose both ‘uniform’ as well as ‘distance’.

Random Forests (RF): Due to using sklearn, I use the Breiman-Cutler implementation of
random forests rather than the Weka implementation. This implementation was also the one
reported by CNM06 due to it yielding better results than the Weka implementation. I chose to
have 1024 as the number of trees in the forest, and the number of features being considered as

1

part of the decision of finding the best split are as follows: 1, 2, 4, 6, 8, 12, 16, and 20.

For logistic regression, support vector machines, and k-nearest neighbors I use Standard Scaler to
transform the data such that the distribution will take on a mean value of 0 and a standard
deviation of 1, but for the random forests algorithm I do not scale the data.

2.2. Performance Metrics

The three performance metrics I chose to measure the performance of the learning algorithms on
the four data sets are Accuracy (ACC), Area Under the Receiver Operating Characteristic Curve
(AUC), and F1-score (FSC).

Accuracy returns a number between 0 and 1 and it is the number of correct predictions made over
the total number of predictions that the model makes. However, accuracy works the best only
when the data sets are balanced and may even be deceitful when it is used on imbalance data sets
(Mishra, 2018). This is why it is used in combination with the AUC and F1-score metrics as they
result in more accurate results, even when data sets are unbalanced. The equation to calculate
accuracy is shown below.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Σ 𝑇𝑟𝑢𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 + Σ 𝑇𝑟𝑢𝑒

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Σ 𝑇𝑜𝑡𝑎𝑙
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

The value resulting in a ROC-AUC calculation ranges from 0 to 1, and the higher the value the
better the model is performing. What the AUC tells us is how well a classifier is able to
distinguish between the classes by calculating the area under the curve of a receiver operating
characteristic curve (Hernández, 2019).

The F1 score uses the harmonic mean to combine both precision and recall, and it results in a
metric that tells you both how precise your model is. The values of F1 score range between 0 and
1 and the larger the F1 value, the better the model is performing. The equation to calculate the F1
score is shown below.

𝐹
1

= 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 1
2 (𝐹𝑃 + 𝐹𝑁)

2.3. Data Sets

There are four binary classification problems used to test the learning algorithms in this study.
Two are used in the original CNM06 paper (CALHOUSING and LETTER) and two are taken
from the UCI Machine Learning Repository (AVILA and ELECTRIC). LETTER also appears in
the UCI Repository, however CALHOUSING originates from (Perlich et al., 2003). Before
performing any analysis, I start by cleaning the four data sets as well as graphing them to get a
visual representation of the data I would be working with (visuals shown in Appendix).
Originally, I had started with four data sets directly from CNM06 (ADULT, CALHOUSING,
COVTYPE, and LETTER), but after creating some visualization and performing some initial
testing on my learning algorithms I introduced some external data sets. Numerical descriptions
for all of the relevant data sets are shown below in Table 1.

2

The AVILA data set was initially split into two sets, the training set and the testing set, so I start
by concatenating them together to create one data set. I first named the columns, and then because
the data was all already numerical I did not have to do any one hot encoding so I isolated my
label column and transformed it into binary values. I took the largest class and treated that class
as positive and the rest as negative. This resulted in an only slightly imbalanced data set with
8572 counts of 1 (41% positive) and 12295 counts of 0 (59% negative).

I start cleaning CALHOUSING by renaming its columns to the appropriate attribute names for
clarity. Again, the values were all numerical resulting in a simple cleaning process. I isolated the
median_house_value column as the target column and transformed it into binary labels by
classifying values > $130000 as 1 and values ≤ $130000 as 0. This data set was by far the most
imbalanced of the four data sets with 14728 counts of 1 (71% positive) and 5912 counts of 0
(29% negative).

ELECTRIC came with numerical attributes and prelabeled columns so I only rename the target
column for clarity. Then I discretize the target column by replacing the classification of ‘stable’
with 1 and the classification of ‘unstable’ with 0. This again resulted in an unbalanced data set
with 3620 counts of 1 (36% positive) and 6380 counts of 0 (64% negative).

For LETTER I start by renaming the columns to make the data more comprehensive. Then I
isolate the target column as ‘capital_letter’ which is the only non numerical attribute in the data
set. I discretize this column by treating the letters from A-M as positive and the letters N-Z as
negative. This yielded the most balanced data set with 9940 counts of 1 (49% positive) and 10060
counts of 0 (51% negative).

Table 1. Description of Problems

3. Experiment Composition & Results
The general structure of the experiment is that for each of the algorithm/data set combinations
created from the four learning algorithms and four data sets there are five trials of searching for
optimal hyperparameters. In each of the trials, 5000 random samples are randomly selected from
the data set to perform 5-folds cross validation on, and the remaining samples are set aside. Then
the appropriate lists of hyperparameters are created. These are determined by the current learning
algorithm and fed into the algorithm using a Pipeline. Next, GridSearchCV is used to streamline
the process of isolating optimal performing hyperparameter combinations for each of the three
performance metrics that were previously decided: accuracy, AUC, and F1. Once the optimal

3

hyperparameters are generated, three models are created with the best hyperparameters respective
to each of the three performance metrics. With these models I was able to predict on the test set
which consisted of the remaining samples not selected as part of the random selection of 5000
samples. Then the raw test performance measurements were outputted for each trial for each data
set as well as computed averages for easy comparison between algorithms (Table 9 in Appendix).

3.1. Performances by Metric

The normalized scores for each of the four learning algorithms (SVM, logistic regression, KNN,
and random forests) by metric averages over all of the four data sets are shown below in Table 2.
The table is denoted where the bolded numbers correspond to the highest value for that metric
and the ones that have an asterisk beside them are the values that after performing an independent
t-test did not prove to have a significant difference from the bolded values. Accordingly, values
that do not have an asterisk next to them are values that are significantly lower than the bolded
values according to the independent t-test. The threshold used as a determining factor in the
independent t-tests is p=0.05, and for every t-test the test did not assume equal variance and thus
performed a Welch’s t-test rather than a standard independent two sample test. Tables 5 and 6 are
supplemental tables for Table 2 are located in the Appendix and show each of the distinct
t-statistics and p-values for each t-test that was performed on the values in Table 2.

Table 2. Testing Set Performance
(normalized scores for each learning algorithm by metric averaged over four problems)

In this table each of the scores are averages of the performance metrics for all four of the data
sets. For example, the SVM/ACC cell is the average of the four accuracy scores calculated for
each of the data sets. Acting as a baseline for comparison is the exact same values calculated for
the Training Set Performance seen in Table 4 in the Appendix. The rightmost MEAN column is
the average over all five trials of the four data sets and three metrics for one learning algorithm.
Looking at the table we can see that the pattern suggests that random forests is the strongest
performing learning algorithm, however none of the algorithms performed particularly poorly. In
fact, the t-test and resulting p-values showed that every value in the accuracy, AUC, and F1 score
columns are not significantly lower than the bolded values in each metric’s respective columns. In
the entire table there were only two values, both from the MEAN column, that are significantly
lower than the bolded number.

The testing set performance results can be compared to the training set performance results
recorded in the Appendix. In the training results, random forests performed perfectly across every

4

metric and KNN was very close behind it. This differs slightly from the testing set performance as
in the testing set table random forests are still the highest performing model, but SVMs are next
with both KNN and logistic regression performing almost equally. The values in the Training Set
Performance table are higher than the Testing Set but not absurdly high implying that overfitting
did not occur. Had the values in the Testing Set been much lower than the training set there would
be more of a concern of overfitting existing. Nonetheless, some variation between training set
performance and testing set performance is expected and highly welcome.

3.2. Performances by Problem

Table 3 shown below contains the normalized scores for each learning algorithm by problem and
each value is averaged over all three of the performance metrics. This table follows the same
denotation as Table 2 where the bolded values are the highest values in that column (in this case
the highest value for each data set) and the numbers with asterisks beside them are the values that
according to a t-test calculation have p-values greater than a threshold of p=0.05 and are therefore
not significantly lower than the bolded value in that column. For each cell each of the three
metrics are averaged for one algorithm/data set combination. For instance, in the SVM/AVILA
cell the accuracy, AUC, and F1 score for all trials run on the AVILA data set with the SVM
learning algorithm are averaged and is outputted as one score seen in the table.

Table 3. Testing Set Performance
(normalized scores for each learning algorithm by problem averaged over three metrics)

From this table we can see that random forests is the best performing learning algorithm for three
out of the four data sets. For AVILA after random forests, the second best performing model are
SVMs, followed closely by KNNs, and then finally logistic regression. The CALHOUSING data
set actually had logistic regression as its second best performing model with KNNs as the third
and lastly SVMs. Numbers for the ELECTRIC data set were exceedingly close to each other with
SVMs coming in second, then logistic regression, and ultimately KNNs. The logistic regression
result for ELECTRIC was also the only value besides some in the MEAN column that after
performing a t-test and collecting p-values was considered significantly closer to the highest
value. Finally in the LETTER data set the KNN learning algorithm actually outperformed the
other algorithms with random forest coming second, then SVM and lastly logistic regression. This
is interesting because LETTER was the most balanced of the data sets and yet the one data set
where random forests did not perform the best. However, this circumstance may just be an
anomaly as in this study there are only five trials being performed for every algorithm here and
the values are so close that with a different set of trails the numbers could very well change. The

5

corresponding t-statistics as well as the p-values for all of the figures in Table 3 can be found in
Tables 7 and 8 in the Appendix.

4. Discussion
In CNM06 their highest performing learning algorithms include bagged trees, neural nets, and
random forest trees, and this is all prior to calibration. After calibration, SVMs performance
improved significantly to be nearly as well performing as random forests. For the most part,
single decision trees and logistic regression are two learning algorithms that were not performing
at a high level. However, in both the CNM06 results as well as in my replication study, the
generalizations do waver as some learning algorithms fluctuate between trials or have a better
performance with a specific data set.

Ultimately, the results from my smaller scale replication are aligned with CNM06. Random
forests consistently performed the best out of the four algorithms. KNNs and SVMs both were
also steadily produced high results with logistic regression coming in last. However, logistic
regression still performed fairly well as all four learning algorithms generated high results. As
previously stated, the general trends in the performance of the four learning algorithms remained
constant. However, between different trials and various computations, the algorithms did produce
varying results.

In order to get more comprehensive and generalizable results I would have to include more trials,
learning algorithms, and performance metrics and eventually reach a similar scale as CNM06.
One downfall with comparing significant differences with an independent t-test is that there were
such few trials and a higher threshold of p=0.05. I do believe that more extensive testing and a
lower threshold would result in fewer false positives and more valid results. Because of the small
scale of the study many of the values would fluctuate between trials and although there is a
consistent pattern it does not mean that they results never varied.

Ultimately, the small scale reproduction was predominantly successful at replicating the study
performed in CNM06. Accordingly, the original goal of substantiating the results in Caruana and
Niculescu-Mizil’s paper by emulating their study was achieved.

Bonus
To extend the base requirements of the project I included a fourth learning algorithm into my
code. I also started with the data sets given in the paper but branched out to pick up two more data
sets. The extra data cleaning done for the ADULT and COVTYPE data sets that were originally
done but then replaced is shown as Figures 5 and 6 in the Appendix. The reason behind this was
that I wanted to get the experience of working with using one hot encoding to turn nominal data
into usable variables and that was done in both ADULT and COVTYPE. I also did some testing
on LETTER V1 where the target label was split very unevenly into classes just to confirm that the
performance metrics were outputting expected results. Cleaning for this data set is listed as Figure
7 in the Appendix. I also wanted to create visualizations of my data so as to not blindly work on

6

data sets so I went ahead and graphed the AVILA, CALHOUSING, ELECTRIC, and LETTER
data sets. Screenshots of these graphs are included in the Appendix.

Acknowledgements
I would like to take a moment and acknowledge support for this project by Professor Jason
Fleischer as well as TA Abdullah Al-Battal and the rest of the COGS 118A TAs and IAs. They
were all endlessly patient during office hours and discussion sections throughout the entire
quarter, but especially during this project. The lecture slides, github notebooks, and homework
assignments were also greatly appreciated as they helped me break down class concepts and made
everything understandable. I am also extremely grateful to my peers who were eager to help
answer questions on Piazza and further helped clarify my understanding on numerous machine
learning topics.

References
Caruana, R., & Niculescu-Mizil, A. (2006). An Empirical Comparison of Supervised Learning

Algorithms. Proceedings of the 23rd International Conference on Machine Learning.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

Fleischer, Jason, “Jasongfleischer/UCSD_COGS118A.” GitHub,
github.com/jasongfleischer/UCSD_COGS118A.

Hernández, Pablo. “Mine Is Better: Metrics for Evaluating Your (and Others) Machine Learning
Models.” DataScienceAero, 5 Apr. 2019.

King, R., Feng, C., & Sutherland, A. (1995). Statlog: comparison of classification algorithms on
large real world problems. Applied Artificial Intelligence, 9.

Mishra, Aditya. “Metrics to Evaluate Your Machine Learning Algorithm.” Medium, Towards
Data Science, 24 Feb. 2018.

Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability
Letters, 33 (1997) 291-297.

Perlich, C., Provost, F., & Simonoff, J. S. (2003). Tree induction vs. logistic regression: a
learning-curve analysis. J. Mach. Learn. Res., 4, 211–255.

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

“Scipy.stats.ttest_ind.” Scipy.stats.ttest_ind - SciPy v1.6.1 Reference Guide, SciPy, 18 Feb. 2021,
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html.

7

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

Appendix
Table 4.
Training Set Performance
(normalized scores for each learning algorithm by metric averaged over four problems)

Table 5 (Supplemental for Table 2).
P-values for mean test set performance across trials for each algorithm/data set

Table 6 (Supplemental for Table 2).
T-statistics for mean test set performance across trials for each algorithm/data set

Table 7 (Supplemental for Table 3).
P-values for mean test set performance across trials for each algorithm/metric

8

Table 8 (Supplemental for Table 3).
T-statistic for mean test set performance across trials for each algorithm/metric

Table 9.
Raw Test Scores

AVILA CALHOUSING ELECTRIC LETTER

SVM

TRIAL 1

ACC 0.835 0.712 0.996 0.843

AUC 0.906 0.489 0.999 0.987

FSC 0.798 0.832 0.994 0.815

TRIAL 2

ACC 0.835 0.713 0.995 0.929

AUC 0.910 0.499 0.999 0.987

FSC 0.795 0.833 0.993 0.932

TRIAL 3

ACC 0.831 0.711 0.996 0.886

AUC 0.911 0.498 0.999 0.987

FSC 0.792 0.831 0.995 0.895

TRIAL 4

ACC 0.840 0.715 0.991 0.893

AUC 0.913 0.498 0.999 0.987

FSC 0.804 0.834 0.987 0.881

TRIAL 5

ACC 0.835 0.712 0.996 0.890

AUC 0.910 0.498 0.999 0.987

FSC 0.797 0.831 0.994 0.877

LR

TRIAL 1

ACC 0.685 0.808 0.981 0.725

AUC 0.755 0.864 0.998 0.812

FSC 0.575 0.872 0.973 0.731

TRIAL 2

ACC 0.685 0.808 0.996 0.726

AUC 0.764 0.868 0.999 0.812

FSC 0.571 0.871 0.994 0.727

TRIAL 3

ACC 0.683 0.828 0.996 0.723

AUC 0.758 0.888 0.999 0.810

FSC 0.574 0.873 0.994 0.724

9

TRIAL 4

ACC 0.690 0.813 0.994 0.728

AUC 0.770 0.868 0.999 0.815

FSC 0.569 0.874 0.991 0.728

TRIAL 5

ACC 0.687 0.808 0.994 0.730

AUC 0.762 0.865 0.999 0.817

FSC 0.578 0.871 0.992 0.733

KNN

TRIAL 1

ACC 0.793 0.700 0.7922 0.957

AUC 0.871 0.662 0.855 0.980

FSC 0.749 0.812 0.684 0.957

TRIAL 2

ACC 0.801 0.697 0.789 0.957

AUC 0.881 0.665 0.857 0.980

FSC 0.758 0.810 0.681 0.957

TRIAL 3

ACC 0.794 0.698 0.796 0.955

AUC 0.874 0.665 0.856 0.980

FSC 0.750 0.811 0.689 0.955

TRIAL 4

ACC 0.799 0.700 0.786 0.960

AUC 0.878 0.665 0.846 0.982

FSC 0.757 0.8105 0.665 0.959

TRIAL 5

ACC 0.800 0.700 0.794 0.955

AUC 0.875 0.661 0.854 0.980

FSC 0.759 0.815 0.681 0.954

RF

TRIAL 1

ACC 0.965 0.900 0.999 0.943

AUC 0.995 0.958 1 0.989

FSC 0.956 0.930 0.998 0.940

TRIAL 2

ACC 0.972 0.898 1 0.947

AUC 0.996 0.956 1 0.990

FSC 0.966 0.929 1 0.948

TRIAL 3

ACC 0.967 0.895 1 0.949

AUC 0.994 0.956 1 0.991

FSC 0.961 0.927 1 0.949

TRIAL 4

ACC 0.968 0.903 0.999 0.943

AUC 0.995 0.958 1 0.990

FSC 0.960 0.932 0.999 0.945

TRIAL 5

ACC 0.972 0.901 0.999 0.949

AUC 0.995 0.956 1 0.991

FSC 0.964 0.931 0.999 0.949

10

Figure 1.
Avila Data Set

Figure 2.
California Housing Data Set

11

Figure 3.
Electrical Grid Stability Simulated Data Data Set

Figure 4.
Letter Data Set

12

Figure 5.
ADULT Data Set Cleaning

13

Figure 6.
CALHOUSING Data Set Cleaning

Figure 7.
LETTER V1 Data Set Cleaning

14

